III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

DYNAMICS OF MACHINERY (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
	UNIT-I					
1	a)	Four masses m_1, m_2, m_3 and m_4 are 200 kg,	L3	CO3	8 M	
		300 kg, 240 kg and 260 kg respectively. The				
		corresponding radii of rotation are 0.2 m, 0.15				
		m, 0.25 m and 0.3 m respectively and the				
		angles between successive masses are $45^{\circ}, 75^{\circ}$				
		and 135 ⁰ . Find the position and magnitude of				
		the balance mass required, if its radius of				
		rotation is 0.2 m.				
	b)	Discuss briefly about radial engines with a	L2	CO1	6 M	
		neat sketch.				
OR						
2	a)	A four cylinder crank engine has the two outer	L3	CO3	10 M	
		cranks set at 120° to each other, and their				
		reciprocating masses are each 350 kg. The				
		distances between the planes of rotation of				
		adjacent cranks are 45,75 and 60 cm. If the				
		engine is to be in complete primary balance,				

		find the reciprocating masses and the relative						
		angular positions for each of the inner cranks.						
		If the length of each crank is 30 cm, the length						
		of each connecting rod is 120 cm, and the						
		speed of rotation is 250 rpm, determine the						
		maximum secondary unbalanced force.						
	b)	Describe the balancing of several masses in a	L2	CO1	4 M			
		plane.						
	UNIT-II							
3	a)	A steam engine 200 mm bore and 300 mm	L3	CO3	9 M			
		stroke has a connecting rod 625 mm long. The						
		mass of the reciprocating parts is 15 kg and the						
		speed is 250 rpm. When the crank is 30^0 to the						
		inner dead centre and moving outwards, the						
		difference in steam pressure is 840 kN/m^2 .						
		Determine i) the force on the crankshaft						
		bearing and ii) the torque acting on the frame.						
	b)	Explain the effect of gyroscopic couple on an	L2	CO1	5 M			
		aeroplane.						
		OR						
4	a)	The connecting rod of steam engine is 350 mm	L3	CO3	9 M			
		long. It has a mass of 20 kg and mass moment						
		of inertia of 8000 kg-mm ² . The centre of						
		gravity is 225 mm from its small end.						
		Determine the dynamic equivalent two mass						
		system of the connecting rod if one of the						
		masses is located at the small end.						
	b)	Define the term Gyroscope and state its	L2	CO1	5 M			
		applications.						

UNIT-III						
5	a)	In a single acting four stroke engine, the	L3	CO4	10 M	
		workdone by the gases during the expansion				
		stroke is three times the workdone during the				
		compression stoke. The workdone during the				
		suction and exhaust strokes is negligible. The				
		engine develops 14 kW at 280 rpm. The				
		fluctuation of speed is limited to 1.5 % of the				
		mean speed on either side. The turning				
		moment diagram during the compression and				
		expansion strokes may be assume to be				
		triangular in shape. Determine the Moment of				
		inertia of the flywheel.				
	b)	Explain the working principle of Hartnell	L2	CO4	4 M	
		governor.				
		OR	r			
6	a)	Each arm of a porter governor is 200 mm long	L3	CO4	10 M	
		and is pivoted on the axis of Rotation. The				
		radii of rotation of the balls at the minimum				
		and maximum speeds are 120 mm and 160				
		mm. The mass of the sleeve is 24 kg and each				
		ball is 4 kg. Find the range of speed of the				
		governor. Also find the range of speed if the				
	• `	friction at the sleeve is 18 N.		<u> </u>	4.2.6	
	b)	Explain briefly about sensitiveness and	L2	CO4	4 M	
		isochronous of governors.				
UNIT-IV						
7	a)	Define the terms i) Free and Forced Vibrations	L2	CO1	4 M	
		ii) Natural frequency and resonance.				

	b)	A contileven sheft of 50 mm die 200 mm lang	12	CO2	10 1/			
	b)	A cantilever shaft of 50 mm dia, 300 mm long	L3	CO2	10 M			
		has a disc of 100 kg attached to the free end.						
		The Young's modulus is 200 GN/m^2 .						
		Determine i) Frequency of longitudinal						
		vibration ii) Frequency of transverse vibration.						
OR								
8	a)	Derive an expression for the natural frequency	L3	CO2	8 M			
		of oscillation of simple pendulum by						
		D'Alemberts principle method.						
	b)	Discuss briefly about equivalent stiffness of	L2	CO1	6 M			
		springs.						
		UNIT-V						
9	a)	An engine rests on an elastic foundation which	L3	CO2	10 M			
		deflects 0.85 mm under the dead load. Find the						
		frequency of free vertical vibration. If the						
		engine has a mass of 1250 kg and when						
		running at 450 rpm, there is an out of balanced						
		force at this frequency and magnitude 2400 N.						
		Find the maximum amplitude.						
	b)	Explain briefly about the response of the	L2	CO2	4 M			
	,	periodic excitation.						
	OR							
10	a)	Discuss briefly about vibration analysis of	L2	CO2	6 M			
		harmonic motion.						
	b)	An SDOF system has a total weight of 5 kN	L3	CO2	8 M			
		and a spring stiffness of 360 kN/m. The system						
		is excited at resonance by a harmonic force of						
		3kN. Determine the displacement amplitude of						
		the forced response after (i) 1.25 cycles and						
		(ii) 10.25 cycles.						